

MARS SERIES SERVO-HYDRAULIC SOLUTION 600 – 33,000 kN

MA

510*

00

. .

Research & Development

Early Stage 2006 - 2007

Generation I 2007 - 2012

Generation II 2013 - 2018

HTF Series MA servo control technology was born Servo energy-saving technology mature and extension

Servo technology upgrading

More precise

Smart Dynamic Interactive

Intelligent Flexible Sustainable

Page 1

Machine Range & Combinations

	130	280	400	570	750	1000	1350	1700	2250	3200	4500	5000	6800	8400	10600	15800	19300	41000	52800	62000
600																				
900																				
1200																				
1600																				
2000																				
2500																				
2800																				
3200																				
3800																				
4700																				
5300																				
6000																				
7000																				
8000																				
9000																				
10000																				
12000																				
13000																				
14000																				
16000																				
18500																				
21000																				
24000																				
28000																				
33000																				

Combination range

Features

01 Powerful

- High Injection Performance
- Resistant Plasticization Unit
- Rigid Clamping Unit Structure

03 Hardware

- Electrical parts
- Hydraulic parts

02 Efficient

- Electrical Charging as Standard
- Energy Saving
- Flexible Cooling/Thermal Control

04 Smart Technology

- Smart Algorithms
- HT- XTEND

Introducing HT·XTEND

The new **Standard** in Injection Molding through Smart Machine Technology

Al Algorithms

Sensor Technology Communication Technology

Hardware Design

MA1600

Control Technology

Introducing HT·XTEND

Real-time Monitoring Greater flexibility in production Increased Output with reduced costs optimization Al-driver Cost Reduction and ROI

> Minimizing downtime & maintenance expenses Energy Savings and Sustainability

Adaptability to New Materials

Enhanced Safety and Monitoring

Improved Precision and Quality Control

> control systems Adaptive

Overview Haitain Mars Series

High Rigid Platen

Structure reduces platen deformation and improves product quality

Intelligent Mold Open/Close

Self-learning and -correcting algorithms adjusts positioning quickly and precisely

Consumption

Smart energy consumption monitoring and auxiliary management via HMI

Intelligent Lubrication

Precise lubrication control, self-optimizing lubrication parameters

HMI

Large-screen control panel and UI design make for fast and intuitive interaction with machine

Supervised Energy

Resistant Plasticizing Unit

Strong performance with high wear resistance of plasticized parts (doubled compared G3)

Electrical Charging

Improves plasticizing speed and quality, while reducing energy consumption of the entire process (standard for models with IU of < 10600)

Dust-free distribution box

Extension of service life of technical components

High-response servo system

Tailor-made servo power system, high-speed response, dynamic sensitivity, and surging power

Injection Unit

- IU Structures
- Plasticizing Components
- Double-layer Linear Guides
- Energy-saving Heating Device
- Material Leakage Detection
- Full Closed-loop Injection Control
- Injection Performance
- Electrical Charging
- Charging Performance

5

Injection Unit Structures

The injection oil cylinder below 250T, changing from a dual-cylinder to a single-cylinder, reduces injection resistance by 44% to 78% at various flow rates under no-load conditions. Injection unit 130-8400 equipment with electrical change motor, above is option.

Plasticizing Components

Highly resistant and efficient

- > 2500 kN: A screw and models below 2500 kN are standard with all hard screws
- 250T B/C screw and 250T and above models are standard with bi-metal screw
- Alloy barrel is used for models 2100T and below
- Wear resistance is greatly improved to further generations

Double-layer Linear Guides

Max. support for carriage and IU

- Low friction coefficient
- Low injection inertia
- High injection precision
- Better acceleration and deceleration response
- Precise back pressure control
- Wear resistance greatly improved to further generations

Energy-saving Heating Device

- Overall better energy saving results
- Optimal insulation
- Easy and quick to dismantle

Туре	New	Old
Heating Energy (kW)	3.14	3.55
Saving	12 %	-
Description	Housing on top, left and right sides to save energy	_

Material Leakage Detection

When the nozzle contact surface leakage to the detection switch, and the computer read the temperature and time to a certain range, the machine will alarm, customers can choose use or not.

Full Closed-loop Injection Control

Repetitive accuracy testing of product weight

- High precision and repeatability
- Fast response
- Stability also at low injection-speeds

- Process adaptability

Repetitive injection positioning accuracy testing of high & low speed

China National Standard	MA1600V	MA1600III
Repetitive injection positioning accuracy	0.080 mm	0.160 mm
Repetitive injection positioning accuracy of high speed	0.431 mm	0.452 mm

Shots

Consistent product quality

Full Closed-loop Injection Control

Standard Mode

Application: Acrylic cosmetic box on MA3200

Set Injection Speed

Full closed-loop mode

Actual Injection Speed

Injection Performance Improvements

Charging Performance Improvements

··· 6000/4500 ··· 12000/8400 ··· 33000/62000

- Screw speed increase
 25-35 %
- Plasticizing ability improved 18-24 %

- Overall improvement of plasticizing efficiency
- Shorten dry cycle times

Electrical Charging

- Reduced Energy Consumption
- Improving production cycle times
- Higher Charging Precision

Electrical Charging

Condition	Item	MA1600V	MA160
	Energy Consumption (KW·h)	0.879	1.028
China National	Material (kg)	3.095	3.190
(without mold)	Energy Consumption Ratio (kW·h/kg)	0.284	0.322
	Charging Proportion	40%	40%
	Energy Consumption (KW·h)	MA1600V M tion 0.879 3.095 3.095 n Ratio 0.284 tion 40% tion 1.0139 3.870 3.870 n Ratio 0.262 tion 58%	1.378
China National	Material (kg)	3.870	3.88
mold)	Energy Consumption Ratio (kW·h/kg)	0.262	0.355
	Charging Proportion	58%	58%

MAV1600 equipped with electrical charging

- Under no-load testing with PP material (MFR 30), the energy consumption decreased by 12%.
- Under loaded conditions with the mold (basin mold) using PP material (MFR 10), the energy consumption decreased by 26%.

* according to national standard with unit KW·h/kg.

0111

88

Machine energy consumption reduction

Clamping Unit

- High-rigid platen structure HT·XTEND
- High precision in positioning
- Dry cycle
- Precise mold positioning
- Lubrication Optimization

High-rigid Platen Structure

- Centralized Pressure Platen
- High rigidity against deformation
- Even pressure distribution across the surface
- Excellent moving platen support to protect the mold

High Precision in Positioning

MA III MA V

Set value

HT·CLAMP

- Program self-learning function
- Program self-correction function
- Excellent Clamping Positioning accuracy

High Precision in Positioning

By further optimizing the overall structure, oil circuit and program, the repeatability of clamping position optimized

kN			
	33000		
	6000	٦	
		}	From 5.0mm to 2.0 mm
	2800 2500	J	oriess
		Ļ	From 3.0 to 1.0 mm or
	600	J	less

Dry Cycles in 5th Generation

Specification	Dry Cycle time (s)
MA600V/130	1.4
MA900V/280	1.5
MA1200V/400	1.7
MA1600V/570	1.9
MA2000V/750	2.0
MA2500V/1000	2.1
MA2800V/1350	2.25
MA3200V/1700	2.35
MA3800V/2250	2.6
MA4700V/3200	2.8
MA5300V/4500	3.05
MA6000V/4500	3.3
MA7000V/5000	3.6
MA8000V/6800	3.9
MA9000V/6800	4.3
MA10000V/8400	4.6
MA12000V/8400	4.8

- Self-learning and –correcting algorithm
- Correction of the position deviation
- Precise mold positioning
- Stable and fast performance

Non-Welding Technology

- Power pipeline non-welding process
- Cleaner and reduces the risk of oil spills

Efficient Oil Temperature Control

- Precise oil temperature control
- Stable machine performance due to oil cleaning
- Special: 2800 and above machines with a separate filtration system
- Water control valve for oil cooling

Water Control Valve for Oil Cooling

- PWM water control valve opens the cooling water circuit when oil temperature > set temperature
- Stabilization of Oil temperature

Test Design:

15% is a normal range, 20% is considered an extreme condition. At 15% heating power, the cooling water PWM can save 17.5 L/min of water supply that occupying 67.3% of the total volume. The water temperature fluctuation is calculated to be between 0.8~1.3 °C after PWM control.

Condition	Heating Power	Oil Temp.	Water Flow Rate	Cooling Temp.	Chiller Flow Rate
	10%	36.6	4.16L/min	25	26L/min
	15%	38.3	8.58L/min	25	26L/min
	20%	38.8	9.88L/min	25	26L/min
	26%	40.5	14.3L/min	25	26L/min
Normally Open	15%	32.8	26.00L/min	25	26L/min

Drive Technology

- Mars Servo Drive System
- Haitian Servo Technology

Mars Servo Drive System

Dedicated servo power system for injection molding machines

185 bar System pressure

High performance servo drive system

Efficient, energy saving, quiet and stable operation

SUMITOMO high speed gear pumps

Ultra-high dynamic response of 100 ms

Haitian Servo Technology

Page 32

Software and Control

- Control Panel
- UI Design
- HT ·INJECTION
- HT ·CHARGE
- HT·LUBRICATE
- HT·DIAGNOSE
- HT·ENERGY

	Home	🕹 1 2	021-01-01 16:20:12 ₩ 💥 🚓 🐻
1111 1111 1111 0.0 0.0 0.0	555 555 0.0 0.0	\$\$\$\$ 0.0 0	55 555 .0 0.0 ℃
II Mold Name	IMCS) OilTemp	0.0 °C
5		Cyc.Time	0.00 s
		ClampForce	0 ton
[N] Clmp.Pos.	0.0 mm	nj.Pos.	0.0 mm
►, Ejt.Pos.	0.0 mm	Noz.Pos.	0.0 mm
Home 😰 Clmp 😰 Inje 🖪	Chrg 🖪 Ejet 🕫 C	ore 🗊 Nozl 🖪 Temp	9 🕫 Fast 💷 Next
F1 F2 F3 F	4 F5 F	6 F7 F8	F9 F10
7 8 9 ABC DEF GHI			
4 5 6 PQR		<	>
1 stu 2 vwx 3 vz			~
↓ 0 ∶		ОК	0 C
	调模使用	调模进 调模进	润滑A 润滑B
	2		
	中子A選 中子D进 中子D进	#子D邊 射出	储料 射速 射速 O
(計) 通 () 通 (中子B遗 中子E进 長	中子E遗 S1	座台进
	中子C週 中子F进	中子F遗 模具加热	料简加热 马达

11 11 <td< th=""><th>111 1111 111 111</th><th> Home</th><th>I #</th><th>1 2021-01-01</th><th>16:20:12 € G</th></td<>	111 1111 111 111	Home	I #	1 2021-01-01	16:20:12 € G
IM Moid Name IMCS 00 OlTemp 0.0 °C ShotCount 0 cnt 0, Cyc.Time 0.00 s S. Sr.Speed 0 rpm ICmp.Pos. 0.0 mm Ejt.Pos. 0.0 mm Ejt.Pos. 0.0 mm Image: Strasse stras	Im Mold Name IMCS 0.0 °C Im Mold Name IMCS 0 cnt ShotCount 0 cnt Creation 0.0 rm Image: Strate Speed 0 rpm Image: Speed 0 rpm Image: Strate Speed 0 rpm Image:	111 111 111 111 111 0.0 0.0 0.0 0.0 0.0	\$\$\$ 0.0	0.0 0.0	°C
Image: Second	Image: Second to the second	III Mold Name IMCS	i OilTemp	0.0	°C
• • • • • • • • • • • • •	Image: Sec.Speed 0 rpm Image: Sec.Speed 0 0 Image: Sec.Speed 0 <td></td> <td>Cyc.Time</td> <td>0.00</td> <td>s</td>		Cyc.Time	0.00	s
Image: Comp.Pos. 0.000 kWh/kg Clmp.Pos. 0.0 mm Ejt.Pos. 0.0 mm Image: Clmp.Pos. 0.0 mm Image: Clmp.Image: Clmp	Clmp.Pos. 0.000 kWh/kg Clmp.Pos. 0.0 mm Ejt.Pos. 0.0 mm Ejt.Ejt.Pos. 0.0 mm <tr< td=""><td></td><td>G Scr.Speed</td><td>0</td><td>rpm</td></tr<>		G Scr.Speed	0	rpm
(*) 0.000 kWh/kg Clmp.Pos. 0.0 mm Ejt.Pos. 0.0 mm © Clmp Inje Inje Inje Inje Inje	Clmp.Pos. 0.000 kWh/kg Ejt.Pos. 0.0 mm B Clmp Inje Clmp.Pos. 0.0 mm Clmp.Pos. 0.0 mm Clmp.Pos. 0.0 mm Clmp.Pos. 0.0 mm Clmp. Inje Chrg Ejet Core Noz.Pos. 0.0 mm F2 F3 F4 F5 F6 F7 F8 F9 F10 8 9		県 ClampForce	0	ton
Cimp.Pos. 0.0 mm ••• Inj.Pos. 0.0 mm Ejt.Pos. 0.0 mm •• Noz.Pos. 0.0 mm © Cimp © Inje © Chrg © Ejet © Core © Nozl © Temp © Fast © Nozl © Cimp © Inje © Chrg © Ejet © Core © Nozl © Temp © Fast © Nozl © Cimp © Inje © Core © Nozl © Temp © Fast © Nozl © Cimp © Ejet © Core © Nozl © Temp © Fast © Nozl © Cimp © Ejet © Core © Nozl © Core © Nozl © Core © Cimp © Cimp	Clmp.Pos. 0.0 mm Ejt.Pos. 0.0 mm B Clmp I Inje I Chrg I Ejet I Core I Nozl I Temp I Fast I Nex F2 F3 F4 F5 F6 F7 F8 F9 F9 G Cmp I Inje Inje	0.000 kWh/kg			
Ejt.Pos. 0.0 mm Moz.Pos. 0.0 mm © Cmp Inje © Chrg © Ejt © Core Nozl Temp Fast Next F2 F3 F4 F5 F6 F7 F8 F9 F10 8 9	Ejt.Pos. 0.0 mm Noz.Pos. 0.0 mm 2 Clmp 1 mje 2 Chrg 2 Ejet 3 Core 1 Noz.Pos. 1 Temp 7 Fast 1 Noz.Pos. F2 F3 F4 F5 F6 F7 F8 F9 F10 8/2 9 6 6 6 7 F8 F9 F10 8/2 9 6 6 7 F8 F9 F10 8/2 9 6 6 7 F8 F9 F10 9 6 6 7 7 F8 F9 F10 9 6 6 7 6 7 7 7 7 0 6 6 7 <th>Clmp.Pos. 0.0 mm</th> <th>• Inj.Pos.</th> <th>0.0</th> <th>mm</th>	Clmp.Pos. 0.0 mm	• Inj.Pos.	0.0	mm
Chmp Inje Chrg Ejet Core Nozl Temp Fast Next F2 F3 F4 F5 F6 F7 F8 F9 F10 8 9 6 7 F8 F9 F10 8 9 6 7 F8 F9 F10 8 9 6 7 F8 F9 F10 9 6 7 F8 F9 F10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 10 6 6 7 7 7 7 7 7 9 9 9 9 9 9 9 9 9 9 10 9 9 9 9 9 9 9 9 9 9 10 9 9 9	2 Clmp 2 inje 3 Chrg 2 inje 6 Core 2 Nozi 1 Temp 2 Fast 2 Nozi F2 F3 F4 F5 F6 F7 F8 F9 F10 8 9	Ejt.Pos. 0.0 mm	→ Noz.Pos.	0.0	mm
F2 F3 F4 F5 F6 F7 F8 F9 F10 8 9 9	F2 F3 F4 F5 F6 F7 F8 F9 F10 8 9 0	🖸 Clmp 🖪 Inje 🖪 Chrg 🖪 Ejet 🛛	66 Core 🗗 Nozl	🕫 Temp 😰 Fast	🕫 Next
F2 F3 F4 F5 F6 F7 F8 F9 F10 8x 9x 9x 1	F2 F3 F4 F5 F6 F7 F8 F9 F10 8 9 9				
F2 F3 F4 F5 F6 F7 F8 F9 F10 80 90 Image	F2 F3 F4 F5 F6 F7 F8 F9 F10 8 9 0				
8 9	$ \begin{array}{c} 8\\ 8\\ 0F \\ \hline \\ 5\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	F2 F3 F4 F5	F6 F7	F8 F9	F10
$ \begin{array}{c} 8\\ 8\\ 8\\ 8\\ 8\\ 6\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	8 9				
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Ог GH Image: Constraint of the state of the sta	8 9			
5_{MO} $6_{P,P}$ X X 2_{WX} 3_{YZ} V V 0 3_{YZ} V V 0 0 V V V 0 0 V V V 0 0 V <	5. 6. POR く > 2. 3. マ マ マ 0 3. マ OK O C 0 3. マ OK O C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DEF GHI			
MNO РОК 2, X, 3, 7 3, 7 0 3, 7 0 4 0 5 4 4 1 1 1 <t< td=""><td>MO РОЯ Q 3 <</td><td>5 6</td><td></td><td><</td><td>></td></t<>	MO РОЯ Q 3 <	5 6		<	>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 3 2 ✓ 0 3 3 ✓ OK 2 C 0 3 3 0 0 C C #BR0 2680 388#	MNO			
0	0 。	2 wx 3 yz		V	
0 0	0 。 ※ OK ② C 平自动 全自动 環境使用 環境道 環境道 環境道 環境道 環境道 ・二 ・二 ・二 ・二 ・二 ● ● ● ・二 ・二 ・二 ・二 ● ● ● ・二 ・二 ・二 ● ● ● ● ・二 ・二 ・二 ● ● ● ● ○ ● ● ● ● ● ● ○ ● ● ● ● ● ● ○ ● ● ● ● ● ● ○ ● ● ● ● ● ● ○ ● ● ● ● ● ● ○ ● ● ● ● ● ● ○ ● ● ● ● ● ● ○ ● ● ● ● ● ● ○ ● ● ● ● ● ● ○ ● ● ● ● ● ● ○ ● ● ● <td< td=""><td></td><td></td><td></td><td></td></td<>				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	半自动 全自动 調機使用 調機通 調機道 調機道 調機道 調構道 調構道 調構道 調構通 調構道 調構通 調構 調用 調用 調用 調用 1	0 : 🕸		OK 🕜	С
半前約 全自約 調視使用 調視使用 調視使用 調視使用 調視使用 調用 調用 <td< td=""><td>本面和 全自动 補健使用 調視道 調視道 調視道 調視道 調視道 調視道 調視道 調視道</td><td></td><td></td><td></td><td></td></td<>	本面和 全自动 補健使用 調視道 調視道 調視道 調視道 調視道 調視道 調視道 調視道				
全橋 中子A港 中子D語 中子DE	1.1 2.2 2.2 0 0 合構 中子A进 中子A进 中子D进 中子D进 射出 編 料 1.1 2.2 1.1 2.2 0 0 0 合構 中子A进 中子A进 中子D进 中子D进 中子D进 朝出 編 料 1.1 4.2 1.2 1.2 1.2 1.2 1.2 1111 中子B进 中子B进 中子E进 中子E进 51 座台进	¥自动 全自动 调模使用 • _•• ↓ • •• • • • • • • • • • • • • • •	調模選	调模进 润滑A	润滑B BAA
金根 中子A選 中子A選 中子DB 中子DB 射出 紙 和 計測 101 4人	合模 中子A进 中子A进 中子A进 中子D进 中子D进 射出 僅有 射速 1 <t< td=""><td></td><td>Sec.</td><td>× 0</td><td>0</td></t<>		Sec.	× 0	0
山 人 人 人 人 人 人 人 人 人 人 小 1814 中763 中763 中763 中763 51 第63 第63 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <	四 A A D D 4 4 面計道 中子B進 中子E進 中子E進 S1 運台道 運台道	合模 中子A进 中子A遗 中子D	进中子D退	射出儲料	射退
□ □ □ □ □ □ □ □ □ □ □ □ □ □	顶针进 中子B进 中子B进 中子E进 中子E进 S1 座台进 座台进				4 ///
シー シー シー シー シー 日期次ペ 中子C油 中子C油 中子F油 中子F油 根周加热 马达 日 リー リー リー リー リー リー		顶针进 中子B进 中子B进 中子E	进 中子E退		産台退
母線次气 中子C进 中子C进 中子F进 中子F进 中子F进 中子F进 中子F进 中子F进 中子F进 中子F	· 한 및 및 및 및 S1 🖆 🖆			S1 📑	
	母模吹气 中子C进 中子C进 中子F进 中子F进 模具加热 科蒂加热 马达	母模吹气 中子C进 中子C退 中子F	进 中子F退	模具加热 料筒加热	马达
				····	

MAV 12 inches panel

MAV 15 inches panel

UI Design

New UI design

HT·INJECT

- Real time monitoring of injection process
- Improves weight stability of injected products
- Acitve compensation of external disruptive factors

36

HT·CHARGE

Intelligent Charging

- Energy consumption reduction
- Screw barrel wear is reduce

HT·LUBRICATE

- Algorithms and a precise lubrication model dynamically match the optimal lubrication quantity and parameters
- Intelligently optimized through multi-data algorithms such as lubrication control, cycle times, mold opening stroke and mold clamping pressure
- Automatically calculates lubricating oil consumption and displays the percentage of lubricating parts remaining in real time

HT·LUBRICATE

HT·DIAGNOSE

- The topology of the injection molding machine can be displayed on the controller to help the operator quickly determine the cause of the fault and locate the corresponding module.
- The monitoring points include: controller/J6 card/drive/transducer

Smart self-detection

		8 202	22-01-10 1	4:14:36	
	9		<u>₩</u> & •	⇔ ⊆	\$
5 SLAVE IN	MASTER	Norma Disconnec Lost O	l ●Stat ted ●Stat P	te OK te Err	Dr Sta Re Ac
					Dr Ma Dr
				🕫 Back	F1 Ho

			8	2022-0	1-10 1
S	Topo-Information	G		🕒 🏭	× •
Driver1:HISta.Word00000000RealSpd.0 RPMAct.Torq.0 %DC Volt.0 VDri.Temp0.0 °CMot.Temp0.0 °CDri.Bypa.NoUse					
Press [.] to select					
🗉 Home 😰 Topo 📴 Inf					

V1.0

HT·DIAGNOSE

- The online help
 function provides
 troubleshooting
 measures
- Maintenance tips
- QR code alarm help

							💄 8	202	2-0
ſ				Maintain		G			115
	*	Maint. Project I Every 7 Days	м	aint. Cour	tdown	7	Day	Fatigue	0
	*	Maint Project II Every 500 Hours	м	aint. Cour	tdown	483	Hour	Fatigue	3
	*	Maint ProjectIII Every 3000 Hours	м	aint. Cour	itdown	2983	Hour	Fatigue	1
	*	Maint ProjectIV Every 6000 Hours	м	aint. Cour	itdown	5983	Hour	Fatigue	0
	*	Maint ProjectV Every 12000 Hours	м	aint. Cour	itdown	11983	Hour	Fatigue	0
	*	Maint ProjectVI Every 36000 Hours	М	aint. Cour	itdown	35983	Hour	Fatigue	0
6	Pr	ess [OK] key to sele	ct						
F1	Home	E MT1 E MT2							

•			Alarm- History			-
Dis	olay Sta	rt No.	1	Total Erro	or Count	
No.	Code S	ShotCnt	Alarm Description	Start	t Time	Re
1	1D	4	Lubrication Fail	01/02/21	10:12:42	1
2	2C	4	Hydraulic Safe Error	01/02/21	10:11:52	1
3	1	1	Please Close Door	01/02/21	10:10:48	1
4	С	1	Mold Open End Error	01/02/21	10:10:15	1
5	144	1	Emg Stop Feedback Error	01/02/21	10:10:10	1
6	3	1	Off Man./Emerg. Key	01/02/21	10:09:10	1
7	вв	1	Purge Guard Safe Circuit Error	01/02/21	10:08:38	1
8	1	1	Please Close Door	01/02/21	10:08:21	1
9	3E	1	Door 2 Not Close	01/02/21	10:08:17	1
10	С	1	Mold Open End Error	01/02/21	10:08:04	1

HT·DIAGNOSE

HT·ENERGY

- Real-time display of refined energy consumption information
- Enables customers to optimize energy efficiency
- Reduce energy consumption and waste
- Full range standard

Sector 100 − 1	Home		2021-01-01 16:20:1
iiii iiii 0.0 0.0	iiii iii iii 0.0 0.0 0.	\$ \$\$\$ 0 0.0	111 111 0.0 0.0 °C
Mold Name	IMCS (学) 0.000 kWh/kg	 OilTemp ShotCount Cyc.Time Scr.Speed ClampForce 	0.0 °C 0 cnt 0.00 s 0 rpm 0 ton
 Image: Big the second secon	0.0 mm • 0.0 mm	 Inj.Pos. Noz.Pos. 	0.0 mm 0.0 mm

		_
<u>.</u>		
§		
Heat/D Energy	rive Ratio	
Auto/M Energy	anual Ratio	
Energy	Calendar	(kW
0_0 12.25 1	0_0_0_0 2.26_12.27 a In This F	0 12.3 Page
	Enol	
Home		
F1	F2	F
7 ABC	8 DEF	
4 jkL	5 MNO	
1 stu	2 vwx	
1	0	
+ 45	*****	•
		11.2

No need to match an electric meter, and easily enables refined energy consumption monitoring and analysis

		DIAITIAN PLASTICS MACHINERY	5
		2021-01-01 16:53:19	
Energy-Energy			
Heate 0%	Total Power	3600.000 kW	
Drive 0%	EnergyTotal	16040.000 kWh	
Auto 1%	HeatEnergy	0.000 kWh	
Manua 99 %	DriveEnergy	0.000 kWh	
Vh) 💻 Auto 💻 Manua	Mass Per Mold	0.0 g	
	ProdCount	0	
	EnergyPerMass	0.000 kWh/kg	
<u>0</u> 0 <u>0</u> 0 <u>0</u> 0 <u>0</u> .28 12.29 12.30 12.31	ResetTime 0000-00-00 00:00	Reset	
e Not Measured, For Re	ference Only, Min: 0.0	Max: 1000000.0	
Ene2		🔟 Back	
-3 F4 F5	E6 E7	F8 F9 F10	
9 GHI		^	
6			
POR	Ľ		
3		~	
	0		
全自动 具模使用			
		2 0 0	

				2	1	2021-01-0	01 16:53:2
§		Energy-Energy2	.	U		<u> </u>	3 + 4 G
Last Action Ene	rgy(kWh)		Last 1	0 Cycle E	nergy(k\	Wh)	
Mold Cls.		0.0000	1				0.0000
Mold Opn		0.0000	2				0.0000
Inject		0.0000	3				0.0000
inject		0.0000	4				0.0000
Hold		0.0000	6				0.0000
Charge		0.0000	7				0.0000
SuckBack		0.0000	8				0.0000
E's store			9				0.0000
🖻 Home 😰 Enel	B Ene2]		💷 Bad
12 Home 12 Enel	Ene2	F4 F5	F6	F7	F8	F9	F10
F1 F2	F3	F4 F5	F6	F7	F8	F9	Bad
F1 F2	F3	F4 F5	F6	F7	F8	F9	F10
F1 F2	F3	F4 F5	F6	F7	F8	F9	Bad
Home Enel F1 F2 7 ABC 8 DEF 4 5	F3	F4 F5	F6	F7	F8	F9	F10
Home E Enel F1 F2 7 8 4 5	Ene2 F3	F4 F5	F6	F7	F8	F9	F10
P Home P Enel F1 F2 7 8 4 5 MNO 1 2 2 1 2 YWX 2	Ene2 F3 9 GHI 6 POR 3 YZ	F4 F5	F6	F7	F8	F9	F10
Home E Enel F1 F2 7 8 4 5 4 5 1 2	Ene2 F3 9 GH 6 POR 3 YZ	F4 F5	F6	F7	F8	F9	F10
P Home P Enel F1 F2 7 8 4 5 1 2 1 2 1 0	Ene2 F3 9 GHI 6 PQR 3 YZ ¢	F4 F5	F6	F7	F8	F9	F10
E Home 2 Enel F1 F2 7 ABC 8 Use 5 4 5 MNO 1 STU 2 WXX 0 + BIR	Ene2 F3 F3 9 </td <td>F4 F5</td> <td>F6</td> <td>F7</td> <td>F8 K OK</td> <td>F9</td> <td>F10</td>	F4 F5	F6	F7	F8 K OK	F9	F10

Integration & Control of Auxiliary

- High flexibility for integrated products
- Injection molding machine control system as the center
- Control each production unit via network system
- Mold information is associated with peripheral equipment to achieve highly automated production
- Make production data more transparent and production management more efficient
- Shortcut Buton

Integration & Control of Auxiliary

Drying hopper integrated control (optional)

- After determining the type of raw materials, the corresponding drying temperature and drying time are intelligently recommended
- After setting drying time, countdown reminder
- Timing switch function
- Fan and electric heating working status display

Integration & Control of MES

Industry Application

Automotive

Plastic parts products in the automotive manufacturing industry are suitable for various process technologies and application needs, providing efficient and highquality solutions.

Consumer Electronics

In the consumer electronics industry, plastic spare parts products in consumer electronics are designed to provide efficient and highquality solutions for molding multiple cavities.

Appliances

Plastic products in household appliances provide flexible, efficient and stable solutions based on product characteristics

Daily Necessities

Plastic products used in daily life respond to the surge in customer costs, focus on customers' return on investment, and provide various economical solutions

510*

00

. .

MARS SERIES Thank You!

